Electrokinetic Library of Microorganisms

Microscale BioSeparations Laboratory

 

eEEEC= empirical Electrokinetic Equilibrium Condition, which is to be used as an EK signature for each type of microorganism for the design of insulator-based separation systems.

·       For more information on how to use the eEEEC please refer to this article [1].

·       Publication on the derivation of the parameter EEEC [2]

·       Publication on bacterial and yeast cells [3].

·       Publication on bacteriophage virus [4].

 

Microorganism

Size

eEEEC (V/cm)

Media conditions

Bacterial cells

 

Bacillus cereus

ATCC #14579

Length: 4.94±0.47 (mm)

Width: 1.32±0.13 (mm)

618 ± 32

DI water

Cond =13.44 ± 0.07 mS/cm

pH = 6.78 ± 0.61

Bacillus subtilis

ATCC #6051

Length: 4.86±0.41 (mm)

Width: 1.94±0.19 (mm)

545 ± 23

DI water

Cond =13.44 ± 0.07 mS/cm

pH = 6.78 ± 0.61

Escherichia coli

ATCC #11775

Length: 2.38±0.32 (mm)

Width: 0.96±0.21 (mm)

1,092 ± 76

DI water

Cond =13.44 ± 0.07 mS/cm

pH = 6.78 ± 0.61

Escherichia coli

ATCC #25922

Length: 2.01±0.42 (mm)

Width: 0.97±0.21 (mm)

1,071 ± 13

DI water

Cond =12.43 ± 1.36 mS/cm

pH = 6.86 ± 0.71

Salmonella enterica serovar Typhimurium (TT9079)

Length: 2.00±0.31 (mm)

Width: 0.97±0.11 (mm)

1,928 ± 170

DI water

Cond =12.35 ± 1.58 mS/cm

pH = 6.88 ± 0.74

Yeast cells

Saccharomyces cerevisiae

ATCC #9763

Diameter: 6.23±0.77 (mm)

505 ± 21

DI water

Cond =13.44 ± 0.07 mS/cm

pH = 6.78 ± 0.61

Bacteriophages

P. chlororaphis phage 201φ2-1

129 nm diam. head, 200x20 nm tail

Source: [5]

3,095 ± 238

DI water

Cond =23.73 ± 12.02 mS/cm

pH = 7.03 ± 0.58

 Salmonella Typhimurium Phage φKZ

 

145 nm diam. head,

200x20 nm tail

Source: [6]

2,140 ± 107

DI water

Cond =15.89 ± 6.65 mS/cm

pH = 6.57 ± 0.35

 Pseudomonas aeruginosa phage SPN3US

140 nm diam. head, 180x20 nm tail

Source: [7, 8]

2,932 ± 247

DI water

Cond =11.97 ± 0.31 mS/cm

pH = 6.41 ± 0.13

References:

1.          Coll De Peña A, Hill N, Lapizco-Encinas BH (2020) Determination of the Empirical Electrokinetic Equilibrium Condition of Microorganisms in Microfluidic Devices. Biosensors 10:148 . doi: 10.3390/bios10100148

2.          Cardenas-Benitez B, Jind B, Gallo-Villanueva RC, Martinez-Chapa SO, Lapizco-Encinas BH, Perez-Gonzalez VH (2020) Direct Current Electrokinetic Particle Trapping in Insulator-Based Microfluidics: Theory and Experiments. Anal Chem 92:12871–12879 . doi: 10.1021/acs.analchem.0c01303

3.          Coll De Peña A, Miller A, Lentz CJ, Hill N, Parthasarathy A, Hudson AO, Lapizco-Encinas BH (2020) Creation of an electrokinetic characterization library for the detection and identification of biological cells. Anal Bioanal Chem 412:3935–3945 . doi: 10.1007/s00216-020-02621-9

4.          Coll De Peña A, Mohd Redzuan NH, Abajorga M, Hill N, Thomas JA, Lapizco-Encinas BH (2019) Analysis of bacteriophages with insulator-based dielectrophoresis. Micromachines 10:450 . doi: 10.3390/mi10070450

5.          Yuan Y, Gao M (2017) Jumbo Bacteriophages: An Overview. Jumbo Bacteriophages An Overview Front Microbiol 8:403 . doi: 10.3389/fmicb.2017.00403

6.          Sokolova OS, Shaburova O V., Pechnikova E V., Shaytan AK, Krylov S V., Kiselev NA, Krylov VN (2014) Genome packaging in EL and Lin68, two giant phiKZ-like bacteriophages of P. aeruginosa. Virology 468:472–478 . doi: 10.1016/j.virol.2014.09.002

7.          Ali B, Desmond MI, Mallory SA, Benítez AD, Buckley LJ, Weintraub ST, Osier M V., Black LW, Thomas JA (2017) To be or not to be T4: Evidence of a complex evolutionary pathway of head structure and assembly in giant Salmonella virus SPN3US. Front Microbiol 8:2251 . doi: 10.3389/fmicb.2017.02251

8.          Heymann JB, Wang B, Newcomb WW, Wu W, Winkler DC, Cheng N, Reilly ER, Hsia R-C, Thomas JA, Steven AC (2020) The Mottled Capsid of the Salmonella Giant Phage SPN3US, a Likely Maturation Intermediate with a Novel Internal Shell. Viruses 12:910 . doi: 10.3390/v12090910