Electrokinetic
Library of Microorganisms
Microscale
BioSeparations Laboratory
eEEEC= empirical Electrokinetic Equilibrium
Condition, which is to be used as an EK signature for each type of
microorganism for the design of insulator-based separation systems.
·
For more
information on how to use the eEEEC please refer to this article [1].
·
Publication
on the derivation of the parameter EEEC [2]
·
Publication
on bacterial and yeast cells [3].
·
Publication
on bacteriophage virus [4].
Microorganism |
Size |
eEEEC (V/cm) |
Media conditions |
Bacterial cells |
|
||
Bacillus
cereus ATCC #14579 |
Length:
4.94±0.47 (mm) Width:
1.32±0.13 (mm) |
618
± 32 |
DI water Cond =13.44 ± 0.07 mS/cm
pH = 6.78 ± 0.61 |
Bacillus subtilis ATCC #6051 |
Length: 4.86±0.41 (mm) Width: 1.94±0.19 (mm) |
545 ± 23 |
DI water Cond =13.44 ± 0.07 mS/cm
pH = 6.78 ± 0.61 |
Escherichia
coli ATCC #11775 |
Length:
2.38±0.32
(mm) Width:
0.96±0.21 (mm) |
1,092
± 76 |
DI water Cond =13.44 ± 0.07 mS/cm
pH = 6.78 ± 0.61 |
Escherichia coli ATCC #25922 |
Length: 2.01±0.42 (mm) Width: 0.97±0.21 (mm) |
1,071 ± 13 |
DI water Cond =12.43 ± 1.36 mS/cm
pH = 6.86 ± 0.71 |
Salmonella
enterica serovar Typhimurium (TT9079) |
Length:
2.00±0.31 (mm) Width:
0.97±0.11 (mm) |
1,928
± 170 |
DI water Cond =12.35 ± 1.58 mS/cm
pH = 6.88 ± 0.74 |
Yeast cells |
|||
Saccharomyces
cerevisiae ATCC #9763 |
Diameter:
6.23±0.77 (mm) |
505
± 21 |
DI water Cond =13.44 ± 0.07 mS/cm
pH = 6.78 ± 0.61 |
Bacteriophages |
|||
P. chlororaphis
phage 201φ2-1 |
129
nm diam. head, 200x20 nm tail Source:
[5] |
3,095 ± 238 |
DI water Cond =23.73 ± 12.02 mS/cm
pH = 7.03 ± 0.58 |
Pseudomonas aeruginosa Phage φKZ
|
145 nm diam. head, 200x20 nm tail Source: [6] |
2,140 ± 107 |
DI water Cond =15.89 ± 6.65 mS/cm
pH = 6.57 ± 0.35 |
Salmonella enterica
Typhimurium phage SPN3US |
140
nm diam. head, 180x20 nm tail Source:
[7, 8] |
2,932 ± 247 |
DI water Cond =11.97 ± 0.31 mS/cm
pH = 6.41 ± 0.13 |
References:
1. Coll De Peña A, Hill N, Lapizco-Encinas
BH (2020) Determination of the Empirical Electrokinetic Equilibrium Condition
of Microorganisms in Microfluidic Devices. Biosensors 10:148 . doi:
10.3390/bios10100148
2. Cardenas-Benitez B, Jind B,
Gallo-Villanueva RC, Martinez-Chapa SO, Lapizco-Encinas BH, Perez-Gonzalez VH
(2020) Direct Current Electrokinetic Particle Trapping in Insulator-Based
Microfluidics: Theory and Experiments. Anal Chem 92:12871–12879 . doi: 10.1021/acs.analchem.0c01303
3. Coll De Peña A, Miller A, Lentz CJ,
Hill N, Parthasarathy A, Hudson AO, Lapizco-Encinas BH (2020) Creation of an
electrokinetic characterization library for the detection and identification of
biological cells. Anal Bioanal Chem 412:3935–3945 . doi:
10.1007/s00216-020-02621-9
4. Coll De Peña A, Mohd Redzuan NH,
Abajorga M, Hill N, Thomas JA, Lapizco-Encinas BH (2019) Analysis of
bacteriophages with insulator-based dielectrophoresis. Micromachines 10:450 .
doi: 10.3390/mi10070450
5. Yuan Y, Gao M (2017) Jumbo
Bacteriophages: An Overview. Jumbo Bacteriophages An Overview Front Microbiol
8:403 . doi: 10.3389/fmicb.2017.00403
6. Sokolova OS, Shaburova O V., Pechnikova
E V., Shaytan AK, Krylov S V., Kiselev NA, Krylov VN (2014) Genome packaging in
EL and Lin68, two giant phiKZ-like bacteriophages of P. aeruginosa. Virology
468:472–478 . doi: 10.1016/j.virol.2014.09.002
7. Ali B, Desmond MI, Mallory SA, Benítez
AD, Buckley LJ, Weintraub ST, Osier M V., Black LW, Thomas JA (2017) To be or
not to be T4: Evidence of a complex evolutionary pathway of head structure and
assembly in giant Salmonella virus SPN3US. Front Microbiol 8:2251 . doi:
10.3389/fmicb.2017.02251
8. Heymann JB, Wang B, Newcomb WW, Wu W,
Winkler DC, Cheng N, Reilly ER, Hsia R-C, Thomas JA, Steven AC (2020) The
Mottled Capsid of the Salmonella Giant Phage SPN3US, a Likely Maturation
Intermediate with a Novel Internal Shell. Viruses 12:910 . doi:
10.3390/v12090910